Open Access Digital Repository of Ministry of Earth Sciences, Government of India

Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon

Chaudhari, HS and Pokhrel, S and Saha, SK and Dhakate, A and Yadav, RK and Salunke, K and Mahapatra, S and Sabeerali, CT and Rao, SA (2013) Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon. International Journal of Climatology, 33 (5). pp. 1057-1069.

Full text not available from this repository. (Request a copy)

Abstract

This study examines the performance of National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) over the Indian monsoon region in 100 years long coupled run, in terms of biases of sea surface temperature (SST), rainfall and circulation. The study further explores the role of the feedback processes in maintaining these biases. The model simulates reasonable monsoon climatology during JJAS (June-September). It shows dry (wet) rainfall bias concomitant with cold (warm) SST bias over east (west) equatorial Indian Ocean. These biases of SST and rainfall affect both lower- and upper-level circulations in a feedback process, which in turn regulates the SST and rainfall biases by maintaining a coupled feedback process. A dry (wet) rainfall bias over east (west) Indian Ocean induces anomalous low level easterlies over tropical Indian Ocean and causes cold SST bias over east Indian Ocean by triggering evaporation and warm SST bias over west Indian Ocean through advection of warm waters. The persistent SST bias retains the zonal asymmetric heating and meridional temperature gradient resulting in a circum-global subtropical westerly jet core, which in turn magnifies the mid-latitude disturbances and decreases the Mascarene high. The decreased Mascarene high diminishes the strength of monsoon cross-equatorial flow and results in less upwelling as compared to that in the observation. It further increases the SST bias over the West Indian Ocean. The coupled interaction among SST, rainfall and circulation works in tandem through a closed feedback loop to maintain the model biases over tropical Indian Ocean.

Item Type: Article
Additional Information: Copyright of this article belongs to Royal Meteorological Society.
Uncontrolled Keywords: Climate forecasts; Cross-equatorial flow; Equatorial Indian Ocean; Indian summer monsoon; Meridional temperature gradient; Model bias; National centers for environmental predictions; Sea surface temperature (SST), Atmospheric temperature; Atmospheric thermodynamics; Climatology; Forecasting; Oceanography; Rain, Climate models, air-sea interaction; climate modeling; meridional circulation; monsoon; rainfall; regional climate; sea surface temperature; summer; temperature gradient; weather forecasting; westerly, India; Indian Ocean; Indian Ocean (West); Mascarene Islands
Subjects: Meteorology and Climatology
Depositing User: IITM Library
Date Deposited: 11 Jun 2014 09:31
Last Modified: 11 Jun 2014 09:31
URI: http://moeseprints.incois.gov.in/id/eprint/365

Actions (login required)

View Item View Item