Open Access Digital Repository of Ministry of Earth Sciences, Government of India

Patchy layered structure of tropical troposphere as seen by Indian MST radar

Asnani, GC and Rama Varma Raja, MK and Narayana Rao, D and Salvekar, PS and Kishore, P and Narayana Rao, T and Venkat Ratnam, M and Rao, PB (2000) Patchy layered structure of tropical troposphere as seen by Indian MST radar. Indian Journal of Radio and Space Physics, 29 (4). pp. 182-191.

[img]
Preview
PDF
Patchy layered.pdf - Published Version

Download (2MB) | Preview

Abstract

The MST radar observations at Gadanki (13.47° N, 79.18° E) show, almost every day throughout the year, stratified layers of intense reflectivity near the tropopause level (17 km) and also at a couple of levels between 4 km and 10 km. Highest individual reflectivity values occur near 17 km, but they occur for a short while. The region between 11 km and 15 km shows the lowest values of reflectivity alongwith vertical downward motion almost on all days of the year. High values of reflectivity are attributed to the existence of visible or sub-visible clouds; the layered structure of clouds is attributed to inertio-gravity waves with vertical wavelength of 2-3 km. It is suggested that each high reflectivity layer consists mainly of thin sheets and patches of visible and sub-visible cloud material. Hydrometeors inside the cloud material go up and down due to gravity, precipitation-loading, Brunt-Vaisala oscillations, and Kelvin-Helmholtz waves. In these small-scale motions, thin air sheets and patches get formed with sharp temperature and humidity discontinuities through contact cooling, melting, evaporation, condensation and freezing. Also, melting and freezing at low temperatures generate electrical charges in these thin sheets and patches. These thin sheets and patches have vertical dimensions ranging from a few centimetres to several metres and horizontal dimensions of the order of 1km. These thin sheets and patches have corresponding vertical and horizontal discontinuities and sharp gradients in refractive index for the MST radar beam. These show up as regions of high values of reflectivity.

Item Type: Article
Additional Information: Copyright of this article belongs to NISCAIR
Subjects: Meteorology and Climatology
Depositing User: IITM Library
Date Deposited: 26 Apr 2015 18:44
Last Modified: 26 Apr 2015 18:44
URI: http://moeseprints.incois.gov.in/id/eprint/1603

Actions (login required)

View Item View Item