Model of tropospheric ion composition: A first attempt

G. Beig
Indian Institute of Tropical Meteorology, Pune, India

Guy P. Brasseur
Max Planck Institute for Meteorology, Hamburg, Germany
National Center for Atmospheric Research, Boulder, Colorado

Abstract. Recent atmospheric ion composition measurements in the troposphere have revealed the presence of several new families of ions below the tropopause, which had not been observed above this level. In a chemical model of tropospheric positive ions, several new channels are proposed to explain this observation, and the presence of very heavy clustered aerosol ions (charged ultrafine particles) are considered. Parent neutral compounds, that are responsible for the formation of positive cluster ions in the troposphere, include ammonia, pyridine, picoline, lutidine, acetone, etc. Model results show that the clustered aerosol ions are dominant near the surface, above which pyridinated cluster ions are most abundant up to about 5 km altitude. Above 7 km, ions having acetone as parent neutral species are in majority. Ammonia and methyl cyanide cluster ions are found to be less abundant as compared to the above. Above 13 km the relative abundance of methyl cyanide cluster ions is rapidly increasing, which suggests that the present model results conform with stratospheric ion models. Experimental data suggest, however, that the concentration of pyridinated compounds is highly variable from one location to another and that the relative abundance of ammonia cluster ions could be high in some remote environments. Similarly, our model shows that NO₃⁻, H₂O₃, HSO₄⁻, and NO₂⁻-core families of ions are the most abundant negative ions in the troposphere during nighttime. The first family dominates below 6 km, whereas the second type dominates between 6 and 10 km. NO₂⁻-core ions are the most abundant ions above 10 km. However, some observational data suggest a dramatic increase in the concentration of sulfuric acid vapor, malonic acid, and methane sulfonic acid during daytime with a related change in the negative ion composition. Our model suggests that under these conditions HSO₄⁻-core ions are the dominant ions below 10 km altitude.

1. Introduction

During the past 2 decades, considerable progress has been made toward achieving a better understanding of ion chemistry below the stratopause. Until recently, many ion composition measurements have been reported for the stratosphere [Arfjes, 1992, and reference therein], while little attention was given to ion composition in the troposphere. However, tropospheric ions play an important role because they influence the electrical conductivity of the atmosphere and their recombination could be a source of ultrafine aerosol particles in the lower atmosphere [Mohnen, 1971; Arnold, 1982; Turco et al., 1998; Yu and Turco, 2000]. The first ion composition measurements near the ground reported by Eisele [1983] revealed the presence of unidentified positive ions with masses of 80 and 94 amu. Thereafter, a few more high-resolution mass spectrometric measurements of naturally occurring tropospheric ions were performed by Perkins and Eisele [1984], Arnold et al. [1984], Eisele and McDaniel [1986], Eisele [1986], Eisele [1989a, b], and Tanner and Eisele [1991].

Fifteen years ago, Heitmann and Arnold [1983] reported the first measurements of negative ions in the troposphere and suggested that the majority of ground level and lower tropospheric negative ions belong to several ion families including NO₂⁻ (HNO₃), (H₂O)₃, and NO₂⁻ and HSO₄⁻ core ions. Recently, Eisele and Tanner [1993] observed a substantial day-night variation in sulfuric acid which should have a considerable influence on the negative ion composition. Specifically, they noticed that daytime gas-phase H₂SO₄ concentrations at ground level are at least an order of magnitude larger than nighttime values. The reduction in the abundance of gas-phase sulfuric acid after sunset results from the shut off of the photooxidation mechanisms which convert SO₂ into H₂SO₄, while the uptake of sulfuric acid vapor onto aerosols remains rapid [Eisele and Tanner, 1993]. Similarly, the concentration of malonic acid (C₃H₄O₂ or MA) and methane sulfonic acid (CH₃SO₃, or MSA) is also reported to undergo diurnal variations [Eisele and Tanner, 1993]. As a result, the HSO₄⁻ core ions are expected to be a dominant family during daytime while a minority family during nighttime.

Several of the early ion composition measurements resulted in the identification of NH₄⁺(H₂O)₃ positive ions. Various heavy ion mass peaks were also observed, but their identification remained speculative. Improved measurement techniques by Eisele [1988] have led to the identification of heterocyclic nitrogen-containing organic molecules, primarily pyridine (C₅H₄N), picoline (or methylpyridine C₅H₅(C₆H₅)), lutidine (or dimethylpyridine C₅H₅(CH₃),N), as the parent neutral species for observed positive ion masses 80, 94, and 108, respectively. Alkaline species and
other heavy ions were also detected in the positive ion spectrum. On the basis of this study it has become increasingly evident that, in most environments, the most abundant positive ions are not NH₄⁺ (H₂O), but pyridine and other alkaline-containing ions. However, in a more recent study, Tanner and Eisele [1991], while not ruling out the presence of pyridinated cluster ions, again found that ammonia cluster ions may be abundant and therefore cannot be ignored. Moreover, the concentration of pyridinated compounds is highly variable from one location to another due to their relatively short lifetime (days to weeks) and the geographical variations in their sources. Hence, in locations where the concentration of pyridinated compounds is small (e.g., the ocean), ammonia and other cluster ions may be dominant as observed by Tanner and Eisele [1991]. In addition, several heavy ion peaks are still unidentified, awaiting improved and more sensitive instrumental techniques.

Owing to the above uncertainties in the ion composition measurements, not much progress has been made so far in the development of theoretical models for tropospheric ions. The early models for tropospheric positive and negative ions developed by Huertas and Fontan [1975] and Huertas et al. [1978] were based on relatively simple and incomplete chemical schemes. More recent attempts made by Kawamoto and Ogawa [1986] and, more recently, by Luis and Salm [1994] and by Luis [1995] have considered an increasingly important number of tropospheric ions and ion reactions. The model study of Beig and Brasseur [1999] has shown that ion composition in the troposphere could be substantially modified as a result of anthropogenic perturbations.

Laboratory measurements of several important reaction rates of interest to tropospheric ion chemistry have become available during the last 2 decades [e.g., Viggiano et al., 1982; 1988a; b] and allow more detailed model studies. A few years ago, Arijs [1992] reviewed the present status of ion composition and stressed the need for more detailed studies on tropospheric ion processes. The aim of the present study is to present a model of tropospheric positive ions in light of recent measurements of ion composition and of reaction rates. Several new reaction channels are proposed, leading to the presence of heavy ions that remain to be experimentally identified. A model of tropospheric negative ion composition based on revised reaction rates is also presented along with some sensitivity tests. Note that much of the postulated ion-molecule chemistry has not yet been carefully studied in the laboratory and that the concentrations of organic ligands such as picoline and lutidine adopted here are based on very preliminary field studies. Our model study should therefore be viewed as a first attempt to calculate the vertical distribution of tropospheric ions.

2. Model Description and Ion Chemical Schemes

2.1. Positive Ion Scheme

The ion chemical scheme proposed in this work and used to calculate the tropospheric positive ion composition is shown in Figure 1a. The major source of ionization in the troposphere is provided by galactic cosmic rays and radioactivity (the later being important only 1–2 km above the surface). The associated ion-pair production rate has been taken from the study of Rosen et al. [1985]. Ions initially formed in this transfer are O₂⁺ and N₂⁺. However, N₂⁺ is immediately converted to O₂⁺ by charge exchange with O₂ and other ions are subsequently produced leading to the formation of water cluster ions H⁺ (H₂O)ᵣ (known as proton hydrates or PH ions and representing the sum of all PH ions for r = 1,2,...) [Ferguson et al., 1979]. All the reaction rates associated with the formation of proton hydrates are fairly well known from laboratory studies and are used in the present model as in the study of Beig et al. [1993a]. Reaction paths affecting H⁺ (H₂O), in the troposphere are believed to be more complex than those occurring in the stratosphere. Possible paths are shown in Figure 1a and the rate constants for the reactions ignored in the study of Beig et al. [1993a] and used in the present study are given in Table 1. The reaction rate for the conversion of PH to H⁺(CH₃CN)ᵣ (H₂O), (known as methyl cyanide cluster ions or non-proton hydrates (NPH) and representing the sum of all NPH ions with r,n =1,2,...) has been measured in the laboratory by Viggiano et al. [1988b]. These values are used in the present study. This particular path is important mostly above the

![Figure 1a Tropospheric positive ion chemical scheme used in the present model.](image-url)
tropopause [Beig et al., 1993a]. In the troposphere, however, the reaction of PH ions with several alkaline compounds with high proton affinity, as shown in Figure 1a, should be faster than the reaction with methyl cyanide (CH₃CN). Examples are provided by the reactions of PH with ammonia (NH₃) and acetone (CH₃COCH₃) whose rates (k₁ and k₂) are known from recent laboratory measurements [Viggiano et al., 1988b]. Resultant ion families are H⁺(NH₃)ₐ(H₂O)ₙ and H⁺(CH₃COCH₃)(H₂O)ₙ (with m and n = 1,2,3,...), and are named here ammonia cluster ions and acetone cluster ions, respectively. The formation mechanism for other types of ions, such as H⁺(NH₃)ₐ(Pyridine)(H₂O)ₙ (ion type no.1); H⁺(NH₃)ₐ(Picoline)(H₂O)ₙ (ion type no.2) and H⁺(NH₃)ₐ(Lutidine)(H₂O)ₙ (ion type no.3), whose presence near the surface has been suggested from ion mass spectrometry measurements [Eisele, 1988], is not well established. We suggest that, for example, H⁺(NH₃)ₐ(Pyridine)(H₂O)ₙ ions may be formed via two different reaction paths. In the first of them, the PH ions are initially converted to ammonia cluster ions (reaction k₁ in Table 1)

\[H⁺(H₂O)ₙ + NH₃ \rightarrow H⁺(NH₃)ₐ(H₂O)ₙ \]

(1a)

and subsequently to pyridinated clusters (reaction k₂):

\[H⁺(NH₃)ₐ(H₂O)ₙ + Pyridine \rightarrow H⁺(NH₃)ₐ(Pyridine)(H₂O)ₙ \]

(1b)

Similar reactions can be considered for ion families involving picoline (2) and lutidine (3). In these reaction schemes it is not clear as to how multiples of NH₃ and H₂O molecules arise. The reaction rates for this first path are known and make this reaction channel a fast and straightforward mechanism for the production of ion family 1 and also probably for families 2 and 3. In the second path, which is believed to be much less efficient, the initial step is a reaction with pyridine (reaction k₃)

\[H⁺(H₂O)ₙ + Pyridine \rightarrow H⁺(Pyridine)(H₂O)ₙ \]

(2a)

followed by a substitution reaction with ammonia (reaction k₄)

\[H⁺(Pyridine)(H₂O)ₙ + NH₃ \rightarrow H⁺(NH₃)ₐ(H₂O)ₙ \]

(2b)

and a subsequent addition of pyridine as in reaction (1b). Reaction (2a) is considered as efficient on the basis of the measurement of rate constant (k₄) [Viggiano et al., 1988b]. The ion family resulting from reaction (2a) is H⁺(Pyridine)(H₂O)ₙ (type 4). Similarly, H⁺(Picoline)(H₂O)ₙ (type 5) and H⁺(Lutidine)(H₂O)ₙ (type 6) may be formed. Note that no information is available for the rate at which the NH₃ substitution reaction (2b) takes place. Because pyridine has a higher proton affinity than ammonia, this reaction is probably slow. A rate constant of 10⁻¹⁵ cm³ s⁻¹ has been assumed and probably represents an upper limit. Similarly rate constants k₅ and k₆ of the paths proposed for the conversion of PH to H⁺(Picoline)(H₂O)ₙ and H⁺(Lutidine)(H₂O)ₙ ions are not known and are assumed to be equal to the rate of analogous path, k₇ (without temperature dependence factor), which has been measured in the laboratory. Rate constants k₁, k₂, k₃, k₄, k₅, k₆, and (H₂O)ₙ are eventually formed from H⁺(NH₃)ₐ(H₂O)ₙ reaction (1b). The associated reaction rate constants k₃ and k₄ have been studied in the laboratory by Viggiano et al. [1988a] for various values of m and n. Rate constant k₅ (which is still unknown) is assumed to be identical to k₄.
formed through the attachment of the major resultant ions (shown in Figure 1a) on tropospheric aerosols. These heavy positive aerosol clustered ions are denoted as A1+, A2+, A3+, A4+ in this figure. The composition of A1+ is of the type H+(Aerosol) compound. Similarly, attachment of aerosol with ammonia, acetone and pyridinated clustered ions constitute A2+, A3+, A4+ (CH3CN)p(H2O)n with methyl cyanide as a parent neutral compound. The formation of such charged aerosol particles already suggested by Arnold et al. [1984] to explain the unidentified heavy mass peaks observed in their ion spectra. In the model the loss of ions is assumed to occur by attachment on aerosol particles and by ion-ion recombination. The total recombination coefficient α used in the present work [Arijs and Beig, 1993a] is expressed as

\[
\alpha = 6 \times 10^{-8} \left(\frac{300}{T} \right)^{0.5} + 1.25 \times 10^{-25} \left(\frac{300}{T} \right)^4 \left(\text{cm}^3 \text{s}^{-1} \right)
\]

where [M] represents the neutral number density (cm⁻³) and T is the temperature (K). In the troposphere, however, the three-body recombination is expected to dominate.

Table 1. Reactions Supplementary to the Reactions Adopted by Beig et al. [1993a, b] and Corresponding Reaction Rate Constants

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant, cm³ s⁻¹</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H+(H2O) + H2O + M → H+(H2O)₂</td>
<td>(R_i = 3.5 \times 10^{27} \left(\frac{300}{T} \right)^2 [M])</td>
<td>Lau et al. [1982]</td>
</tr>
<tr>
<td>H+(H2O) + CH-CN → H+(CH-CN)(H₂O)</td>
<td>(R_i = 3.06 \times 10^{26} \left(\frac{300}{T} \right))</td>
<td>Viggiano et al. [1988b]</td>
</tr>
<tr>
<td>H+(H₂), + NH → H+(NH₂)(H₂O)</td>
<td>(k_i = 1.91 \times 10^9 \left(\frac{300}{T} \right)^{2.5})</td>
<td>Viggiano et al. [1988a]</td>
</tr>
<tr>
<td>H+(H₂O) + CH-CN + H₂O → H+(CH-CN)(H₂O)</td>
<td>(k_i = 2.04 \times 10^9 \left(\frac{300}{T} \right)^{2.5})</td>
<td>Viggiano et al. [1988b]</td>
</tr>
<tr>
<td>H+(CH-CN)(H₂O) + NH → H+(NH₂)(CH-CN)(H₂O)</td>
<td>(k_i = 2 \times 10^9)</td>
<td>Hauck and Arnold [1984]</td>
</tr>
<tr>
<td>H+(CH-CN)(H₂O) + CH-CN → H+(CH-CN)₂(H₂O)</td>
<td>(k_i = 1.8 \times 10^8)</td>
<td>Hauck and Arnold [1984]</td>
</tr>
<tr>
<td>H+(CH-CN)(H₂O) + NH → H+(NH₂)(CH-CN)(H₂O)</td>
<td>(k_i = 1.8 \times 10^8)</td>
<td>Schlagr et al. [1983]</td>
</tr>
<tr>
<td>H+(H₂O), + picoline → H+(picoline)(H₂O)</td>
<td>(k_i = 2.6 \times 10^8 \left(\frac{300}{T} \right)^7)</td>
<td>Viggiano et al. [1988a]</td>
</tr>
<tr>
<td>H+(CH-CN)(H₂O) + pyridine → H+(pyridine)(H₂O)(CH-CN)</td>
<td>(k_i = 2.1 \times 10^7 \left(\frac{300}{T} \right)^7)</td>
<td>Viggiano et al. [1988a]</td>
</tr>
<tr>
<td>H+(H₂O) + picoline → H+(picoline)(H₂O)</td>
<td>(k_i = 2 \times 10^5)</td>
<td>assumed</td>
</tr>
<tr>
<td>H+(H₂O) + lutidine → H+(lutidine)(H₂O)</td>
<td>(k_i = 2 \times 10^5)</td>
<td>assumed</td>
</tr>
<tr>
<td>H+(H₂O) + pyridine → H+(pyridine)(H₂O)</td>
<td>(k_i = 2.08 \times 10^5 \left(\frac{300}{T} \right)^{29})</td>
<td>Viggiano et al. [1988b]</td>
</tr>
</tbody>
</table>

Values of rate constants for reactions of NO core ions with MA and MSA are assumed to be the same as the rate constants of NO core ions with H SO₄. Reaction rate constants for the forward three-body recombination reactions (reactions (R35), (R37), (R39), and (R41)) for CH₃SO and C₂H₅O reactions (10⁻⁹ cm³ s⁻¹) are assumed to be the same as the corresponding recombination reactions of NO ions. Rate constants for the reverse reactions (reactions (R36), (R38), (R40), and (R42)) are derived from thermodynamic considerations.
2.2. Negative Ion Scheme

The chemical scheme for tropospheric negative ions proposed and used in this work is shown in Figure 1b. The first negative ion is produced by the attachment of a free electron to an oxygen molecule resulting in the formation of the primary ion \(\cdot O^- \). Subsequently, other negative ions are formed, until the so-called terminal ion \(\cdot NO^- \) is reached. Up to this channel the scheme adopted in the present study is the same as the scheme used by Beig et al. [1993b] in their model of stratospheric ions. Hence the details of the corresponding reactions are not included in Figure 1b. From \(\cdot NO^- \) onward, our proposed scheme includes several new channels, which are important specifically for tropospheric altitudes. Five major families of ions can be identified: (1) \(\cdot NO^- \)-core ions having \(\cdot HNO_3 \) as ligands; (2) \(\cdot HSO_4^- \)-core ions having \(\cdot HNO_3 \) and \(\cdot H_2SO_4 \) as ligands; (3) \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) type of ions; (4) \(\cdot C_3H_7O^- \)-core ions having \(\cdot HNO_3 \) as ligands; and (5) \(\cdot CH_3SO_3^- \)-core ions having \(\cdot HNO_3 \) as ligands; \(\cdot NO_2 \cdot (H_2O) \), and \(\cdot CO_3^- \)-core ions have also to be considered. Note that the \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) ion is treated separately from the other \(\cdot NO^- \)-core ions (i.e., \(\cdot NO_3^- \cdot (HNO_3) \)) to highlight its dominant role in the troposphere. The other \(\cdot NO^- \)-core ions are dominant in the stratosphere where the abundance of water vapor is low.

When \(\cdot NO^- \) combines with \(\cdot HNO_3 \), then \(\cdot NO^- \cdot HNO_3 \) is formed which undergoes further clustering with \(\cdot HNO_3 \) to form \(\cdot NO_3^- \cdot HNO_3 \cdot H_2O \cdot (n = 2, 3, \ldots) \). Sulfate is introduced into the negative ion channel by the reaction of sulfate core ions with \(\cdot H_2SO_4 \) to form \(\cdot HSO_4^- \cdot HNO_3 \cdot (n = 0, 1, 2) \) ions. The \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) ion is formed by the reaction of \(\cdot NO_3^- \cdot HNO_3 \cdot H_2O \) with \(\cdot H_2O \). The reaction rates associated with the formation of these ions are the same as in the study of Beig et al. [1993b]. \(\cdot NO_3^- \cdot HNO_3 \) and \(\cdot NO_3^- \cdot HNO_3 \cdot H_2O \) type ions are also assumed to react with sulfurous acid to form \(\cdot HSO_4^- \cdot HNO_3 \cdot H_2O \cdot (n = 0, 1, 2) \) ions. The \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) ion is formed by the reaction of \(\cdot NO_3^- \cdot HNO_3 \) with \(\cdot H_2O \). The reaction rates associated with the formation of these ions are the same as in the study of Beig et al. [1993b]. \(\cdot NO_3^- \cdot HNO_3 \) and \(\cdot NO_3^- \cdot HNO_3 \cdot H_2O \) type ions are also assumed to react with sulfurous acid to form \(\cdot HSO_4^- \cdot HNO_3 \cdot H_2O \cdot (n = 0, 1, 2) \) ions. The \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) ion is formed by the reaction of \(\cdot NO_3^- \cdot HNO_3 \) with \(\cdot H_2O \). The reaction rates associated with the formation of these ions are the same as in the study of Beig et al. [1993b]. \(\cdot NO_3^- \cdot HNO_3 \) and \(\cdot NO_3^- \cdot HNO_3 \cdot H_2O \) type ions are also assumed to react with sulfurous acid to form \(\cdot HSO_4^- \cdot HNO_3 \cdot H_2O \cdot (n = 0, 1, 2) \) ions. The \(\cdot NO^- \cdot HNO_3 \cdot H_2O \) ion is formed by the reaction of \(\cdot NO_3^- \cdot HNO_3 \) with \(\cdot H_2O \). Hence, in the present model, analogous reaction rates are considered to be the same as in the case of positive ions (see section 2.1).

In the scheme proposed here, a total of 20 positive ions (Figure 1a shows only the 14 most important ions) and 29 negative ions (Figure 1b shows only 19 ions) is considered. The continuity equations of all the ions are solved for steady state conditions, using a matrix inversion method for both positive and negative ions, respectively [see e.g., Beig et al., 1993a, b]. Calculations are performed from the surface to the altitude of 15 km (with a 1 km vertical resolution) for a particular season and for midlatitude conditions since most existing observational data are provided by measurements made at 44°N.

3. Neutral Species

Several neutral constituents play an important role in determining the ion composition of the troposphere. These include water vapor, methyl cyanide, ammonia, acetone, pyridine, picoline, and luteoline (in the case of positive ions), and nitric acid, sulfuric acid, water vapor, methane sulfonic acid, and malonic acid (in the case of negative ions). There are many other species, which take part in tropospheric ion chemistry, but their role does not seem to be dominant. Most of the vertical profiles of the neutral species influencing the ion model are derived from a two-dimensional model [Brasseur et al., 1990] which treats radiation, dynamics, and chemistry interactively.

The vertical profiles of the mixing ratio for major neutral species, important for positive ion composition, are shown in Figure 2a. This figure shows that the mixing ratio of methyl cyanide (CH,CN) decreases slowly with increasing height. The calculated concentrations are roughly in agreement with the experimental data presented by Ingels et al. [1987] and Snider and Dawson [1984]. Recently, however, Schneider et al. [1997] reported methyl cyanide mixing ratios in the troposphere that are substantially higher than in previous estimates. If correct, these high concentrations imply a stronger surface source or a weaker atmospheric sink of methyl cyanide than previously assumed. It is currently believed that the major sources of CH,CN are biomass burning (including tobacco smoke) and automobile exhausts [Hamm and Warneck, 1990]. Atmospheric destruction is due mainly to the reaction with the hydroxyl (OH) radical. The vertical profiles for all the pyridinated compounds as derived from the two-dimensional model at mid-latitude are also shown in Figure 2a. Not much is known about the atmospheric sources and sinks of pyridine, picoline and luteoline. Their concentration and hence their role for the chemistry of positive ions are probably increasing as a result of human activities [Beig and Brasseur, 1999]. It is believed that the sources of these organic compounds are mainly the combustion of vegetation on the continents, automobile exhaust, industrial and agricultural activities, coal tars, tobacco smoke [Graedel, 1978], and perhaps exchanges with the ocean. These compounds are destroyed in the atmosphere mainly by the OH radical and perhaps also by O, HNO_3, and NO [Eisele, 1986; 1988]. However, additional information on the sources, removal processes, and reaction rates for these species is required to better quantify the global and regional budgets of...
pyridinated compounds. Since the atmospheric concentration of these alkaline compounds is not well established, we have applied for all pyridinated compounds a surface boundary condition that is based on the recent estimates by Tanner and Eisele [1991] and Eisele [1988]. A value of 4 parts per trillion by volume (pptv) is adopted for pyridine, and 0.4 ppt for picoline and lutidine. The rate constant for the reaction of pyridine with OH is taken as 5×10^{-13} cm3 s$^{-1}$ and that of picoline and lutidine with OH is assumed to be 5×10^{-12} cm3 s$^{-1}$. Reaction rates of these compounds with ozone and HNO$_3$ are taken as 1×10^{-14} cm3 s$^{-1}$ and 5×10^{-16} cm3 s$^{-1}$, respectively. These compounds may also react with some NO$_x$ species, but these reactions are not likely to have any significant role, and hence are not considered in the present model. The fact that the concentration of pyridine is 1 order of magnitude greater than that of picoline and lutidine is mainly due to the fact that the loss rate of pyridine with OH is 1 order of magnitude lower than that of picoline and lutidine. As shown by Figure 2a, the volume-mixing ratio of pyridine (4 pptv at the surface) falls off slowly with height. Similar variations with height are found for picoline and lutidine.

The vertical distribution of the species which are not included in the two-dimensional model are taken from recent experimentally derived data. For example, the vertical profile of ammonia is based on the indirect determination by Ziereis and

Figure 2a. Vertical distribution in the troposphere of the volume mixing ratios of ammonia, acetone, pyridine, picoline and lutidine as derived from two-dimensional model calculations or from observations (see text).

Figure 2b. Vertical distribution of H$_2$SO$_4$, MA, and MSA vapor number density (cm$^{-3}$) calculated for nighttime conditions and derived empirically for daytime conditions (see text).
Arnold [1986]. In the case of acetone, two different profiles are considered. The first of them is based on the gas chromatography (GC) measurements of Singh et al. [1994] during the Arctic Boundary Layer Expedition (ABLE 3B). Mixing ratios observed at midlatitude during this field campaign are typically 800–1500 ppv in the boundary layer and 500 ppv in the free troposphere. These values are consistent with the mixing ratios provided by a global chemical transport model such as the Model for Ozone and Related Tracers MOZART [Hauglustaine et al., 1998]. A second profile with lower mixing ratios (200–500 ppv in the boundary layer and 100–200 ppv in the free troposphere) is intended to reproduce the earlier indirect estimates of the acetone mixing ratios by Hauck and Arnold [1984], Arnold et al. [1986] and Knop and Arnold [1987] using a chemical ionization mass spectrometry (CIMS) technique. Except when specified otherwise, the data provided by the GC measurements will be used in the present study.

The adapted vertical distribution of the aerosol concentration is assumed to represent background (nonvolcanic) conditions and is based on the measurements of condensation nuclei by Rosen et al. [1985]. This profile should be regarded as a crude estimate of the average aerosol distribution involved in ion chemistry. Note, however, that the aerosol load of the atmosphere is highly variable with space and time and that this variability should be reflected in the ion composition, especially in the lower troposphere where the aerosol concentration is largest.

Figure 2b shows the vertical distribution of sulfuric acid vapor (H$_2$SO$_4$), methane sulfonic acid (CH$_3$SO$_3$, or MSA), and malonic acid (C$_2$H$_4$O$_4$, or MA) number densities (cm$^{-3}$) as obtained for nighttime conditions. Tanner and Eisele [1991] reported that the concentration of H$_2$SO$_4$ and MSA undergo a diurnal variation. They derived from their measurements at Cheeka Peak Research Station (northwestern corner of the United States) that the concentration of H$_2$SO$_4$ vapor is more than an order of magnitude smaller during nighttime than during daytime. Jefferson et al. [1998] also observed diurnal cycles in the gas-phase concentrations of MSA and H$_2$SO$_4$ at Palmer Station, Antarctica. At Mauna Loa, Hawai`i, where the concentration of aerosol is much lower, the diurnal variation measured by Tanner and Eisele (1991) seems to be less pronounced than at the continental site of Cheeka Peak. The diurnal effect reported at continental sites is presumably due to the suppression of the H$_2$SO$_4$ source at night (oxidation of SO$_2$ into H$_2$SO$_4$) and the continued presence of aerosol particle surfaces which act as a sink for gas-phase H$_2$SO$_4$.

The two-dimensional model (zonally averaged) does not generate day/night variations of chemical species. Hence we have used the adapted vertical distribution of the aerosol concentration as the background model case. New working values representing a general "unperturbed" case are derived from the independent measurements (including vertical profiles) of these compounds from their observed night to their day values. This sensitivity test a surface boundary concentration of 1 x 105 cm$^{-3}$ is adopted for sulfuric acid vapor at night, whereas a value of 5 x 105 cm$^{-3}$ is used for daytime conditions. The resulting distributions of H$_2$SO$_4$, MSA, and MA are shown in Figure 2b: the nighttime number density of H$_2$SO$_4$ vapor increases with altitude from about 105 cm$^{-3}$ at the surface to 8 x 105 cm$^{-3}$ at 8 km, while the daytime concentration of sulfuric acid vapor exhibits a slow increase with altitude from 5 x 105 cm$^{-3}$ at the surface to a maximum (8 x 105 cm$^{-3}$) at about 8 km. The daytime and nighttime concentrations of H$_2$SO$_4$ become almost identical above 8 km where the aerosol concentration becomes small. The chemical processes and reaction rates involved in the production and loss of malonic acid and methane sulfonic acid are not yet known. In addition, only a few observational estimates of concentrations of these compounds are available. Eisele [1988b] deduced from ion concentration ratios directly under energized power lines that malonic acid is several times more abundant than sulfuric acid. At night, this ratio is reported to drop sharply. From their measurements at Palmer Station during the austral summer, Jefferson et al. [1998] reported 24 hour concentrations of 9.5 x 105 cm$^{-3}$ and 1.61 x 105 cm$^{-3}$ (3.0 x 105 cm$^{-3}$ and 2.7 x 105 cm$^{-3}$) for MSA and H$_2$SO$_4$, respectively. The concentrations of MSA observed by Mauldin et al. [1999] over the Pacific Ocean in the boundary layer vary typically from 1.0 x 105 cm$^{-3}$ to 1.5 x 105 cm$^{-3}$.

The vertical profiles of MA and MSA in the troposphere for nighttime conditions, shown in Figure 2b, are generated using the estimates of Tanner and Eisele [1991] and Eisele and Tanner [1993]. In Figure 2b the number density of MSA at the surface is 1 x 105 cm$^{-3}$ (night); it is assumed to vary with height in a similar manner as the sulfuric acid vapor concentration obtained from the two-dimensional model. Similarly, the concentration of MA at the surface during nighttime is assumed to be 1 x 105 cm$^{-3}$ which is also shown in Figure 2b. For daytime the density of MA and MSA is specified as 7 x 105 cm$^{-3}$ at the surface [Tanner and Eisele, 1991]; the generated vertical profiles are shown in Figure 2b. MA and MSA profiles exhibit a steady but slow increase with height up to about 5 km, above which a sharp increase is noticed followed by a concentration maximum at 8 km. The vertical profile is the same as during nighttime above 8 km altitude.

4. Results on Ion Composition and Discussion

Figure 3 shows the vertical distribution of the total ion number density (positive/negative) obtained between the Earth’s surface and the altitude of 15 km. This figure shows that the ion number density increases with height from 460 cm$^{-3}$ at the surface to about 3800 cm$^{-3}$ at 15 km. This increase by almost an order of magnitude is due primarily to the increase with height in the ion production rate. The concentration at 15 km is in agreement with the values in the lowest level of the stratosphere derived for example by Beig et al. [1993a, b], suggesting that a maximum in ion density lies somewhere around 15 km. The calculated total ion number density is somewhat lower than suggested by the observations of Rosen et al. [1985].

4.1. Positive Ions

The vertical distribution of all the major positive ions calculated by the model is represented in Figure 4. This figure shows that the dominant ions are protonated water cluster ions of pyridine, picoline and lutidine, aerosol cluster ions and acetone cluster ions. Pyridinated cluster ions along with aerosol ions are dominant below about 6 km altitude. The aerosol cluster ions (ultrafine charged particles) are found to be the most abundant near the surface (400 cm$^{-3}$), but for the conditions adopted here their concentration decreases with height and reaches 270 cm$^{-3}$ at 5 km and 26 cm$^{-3}$ at 15 km. The concentration of pyridinated cluster ions is found to be 320 cm$^{-3}$ near the surface and increases with height to reach a maximum (1400 cm$^{-3}$) at about 6 km. It decreases above this altitude, but remains nearly constant with height (200 cm$^{-3}$) between 8 km and 14 km. Acetone cluster ions start to dominate above 7 km throughout the upper troposphere where concentrations are larger than 1000 cm$^{-3}$ and reach a maximum of 3000 cm$^{-3}$ at about 12 km. It is important to emphasize here that the concentrations of pyridinated compounds probably exhibit a strong spatial variation. With lifetimes (τ) less than a month, the local abundance of pyridine (τ = 20 days); picoline (τ = 2 days); lutidine (τ = 2 days) and hence the concentration of pyridinated cluster ions at a given location may be different from what is derived by the present model case. However, the calculated concentrations should be regarded as working values representing a general "unperturbed" case. New independent measurements (including vertical profiles) of these alkaline components are needed in order to better characterize the spatial distribution of positive ion composition. Methyl cyano cluster ions are in the minority below 7 km. However, above this altitude, they increase rapidly with height and reach a value of 1600 cm$^{-3}$ at 15 km. Above 14 km, CH,CN cluster ions become the dominant ions. It is interesting to note that, with the
conditions adopted in the model (Figure 4), the ammonia cluster ions are never the dominant ions; their concentration increases from 10 cm$^{-3}$ near the surface to about 100 cm$^{-3}$ at 6 km. Above 8 km it is roughly of the order of 40 cm$^{-3}$.

The concentration of proton hydrates is always low. It is negligible near the surface and increases with height to reach a value of 180 cm$^{-3}$ at about 15 km.

The breakup of all six pyridinated cluster ions, as calculated by the model, is represented in Figure 5. This figure shows that the dominant ions in the pyridinated cluster ion family are $\text{H}^+(\text{NH}_3)(\text{pyridine})(\text{H}_2\text{O})_n$ (type 1) below 12 km and $\text{H}^+(\text{pyridine})(\text{H}_2\text{O})_n$ (type 4) above this height. The second set of dominant ions belongs to the families of $\text{H}^+(\text{NH}_3)(\text{picoline})(\text{H}_2\text{O})_n$ (type 2) and $\text{H}^+(\text{lutidine})(\text{H}_2\text{O})_n$ (type 3). The concentration of these ion families (types 2 and 3) is of the order of 40 cm$^{-3}$ and 30 cm$^{-3}$ near the surface, respectively. Their maximum number density is found to be around 6 km (~100 cm$^{-3}$).

The variation with height of the concentration for these two ion families is almost identical. Above 6 km the density of these families (numbers 2 and 3) starts to decrease. It is interesting to note that the concentrations of $\text{H}^+(\text{picoline})(\text{H}_2\text{O})_n$ and $\text{H}^+(\text{lutidine})(\text{H}_2\text{O})_n$ families are almost negligible as compared to that of other pyridinated ions. The sum of the concentration of all these ions is also shown in Figure 5.

The vertical distribution of the percentage abundance of all...
major positive ions in the troposphere calculated by the model is shown in Figure 6a. In this case, the concentrations of acetone obtained by gas chromatography techniques [Singh et al., 1994] have been adopted. From this figure the following conclusions can be drawn: With the conditions adopted in our model, (1) aerosol cluster ions are found to contribute more than 50% to the total ion density near the ground; (2) pyridinated cluster ions are the dominant ion family from 1 km to about 6 km and contribute 50 to 75% of the overall ion density in this atmospheric layer. The peak (75%) for this family is located at about 5 km altitude. This family contributes to about 10% in the height region of 9 km to 15 km. (3) Acetone cluster ions are found to dominate between 7 to 15 km. Their relative concentration reaches a peak value of approximately 85% at about 12 km. (4) At 15 km the contribution of methyl cyanide cluster ions and acetone cluster ions are almost the same (around 40%). (5) Proton hydrate ions are always in the minority in the troposphere and their percentage abundance reaches a maximum of only 5% near the tropopause. (6) The simple ammonia cluster ions remain in the minority (maximum of 5% at 6 km). (7) All other positive ions (not shown in this figure) have negligible contributions to the total ion density. When the lower acetone concentration values deduced from ion mass spectrometry measurements [Knop and Arnold, 1987] are adopted (see Figure 2a), the relative abundance of the positive ions is not substantially modified.

Since large geographical differences in the concentration of pyridinated cluster ions are expected, sensitivity tests have been performed to assess the resulting changes in the percentage abundance of tropospheric ions. In Figure 6b, which is intended to be representative of a weakly polluted site (where the standard concentration of the three pyridinated compounds has been reduced by a factor 10), the dominant ion family between 1 and 6 km remains the pyridinated cluster ions with a peak in the relative abundance reduced to 55% (located at 5 km altitude). In this case, the abundance of ammonia cluster ions reaches a maximum of 20% between 5 and 6 km altitude. If we now assume that, in very remote environments, the concentration of pyridinated species is insignificant and adopt an extreme condition (zero concentration of pyridine, picoline, and lutidine in the model) (Figure 6c), the dominant ions below 6 km become ammonia cluster ions, with a maximum relative abundance of 75% near 5 km altitude. In all three cases, aerosol cluster ions and acetone cluster ions remain dominant near the surface and above 7 km, respectively.

4.2. Negative Ions

The concentration of the different negative ions, shown in Figure 1b, has also been calculated by the model. Figure 7 represents the vertical distribution of the percentage abundance of major negative ions obtained for nighttime conditions. It shows that, in this case, the dominant families of negative ions are NO₃ core ions, HSO₄ core ions, and the NO₂⁻HNO₃-H₂O ion. In addition, negative aerosol cluster ions are abundant (of the order of 50% of the total ion concentration) near the surface. It is interesting to note that most of the ions below 7 km are of the type NO₂⁻, HNO₃, H₂O. The percentage abundance of this ion is of the order of 70% between 3 and 6 km altitude. Above 6 km the concentration of NO₂⁻ decreases with height. Between 7 and 10 km, HSO₄⁻ core ions become dominant and contribute to 65% of the negative ions at 8.5 km altitude. The percentage abundance of NO₂⁻ core ions increases rapidly above 8 km. This ion becomes dominant above 10 km altitude. The other ions shown in Figure 1b contribute insignificantly to the total negative ion density.

The vertical profiles of the number density of the five most abundant negative ion families calculated for nighttime conditions are shown in Figure 8. The concentration of NO₂⁻, HNO₃, H₂O ion (profile 3) is predicted to be 250 cm⁻³ near the surface and to reach a maximum (1400 cm⁻³) at approximately 6 km altitude. Above 10 km the number density of this ion decreases rapidly with height. The concentration of the NO₂⁻ (HNO₃) ion type, which represents the sum of all NO₂⁻ core ions having HNO₃ as ligands (profile 1), is very small at low altitude (less than 10 cm⁻³) but increases with height to reach approximately 3000 cm⁻³ at 15 km. The vertical distribution of the sum of all the HSO₄⁻ core ions (having HNO₃ and H₂SO₄ as ligands) is also shown in this figure (profile 2). It is found that the maximum contribution to total HSO₄⁻ core ions is...
Figure 6. Vertical distributions of the percentage abundance of dominant positive ions calculated in the model: (a) acetone observations from Singh et al. [1994], (b) concentration of pyridinated compounds reduced by a factor of 10, and (c) concentration of pyridinated compounds set to zero.

provided by the HSO₄⁻ (HNO₃)ₙ ion family, while the concentration of the HSO₄⁺ (H₂SO₄)ₙ ion family is much smaller. It is noticed from Figure 8 that the concentration of HSO₄⁻ core ions increases with height and reaches a maximum of approximately 1400 cm⁻³ around 8 km above which it decreases slowly with height. The concentration of C₆H₆O₆ ions (MA) and CH₃SO₃⁻ ions (MSA) (shown by profile 4 in Figure 8) are identical. The increase from 0.1 cm⁻³ at the surface to 250 cm⁻³ at 11 km. If the vertical distribution of the aerosol density suggested by Rosen and Hofmann (1988) is used, the calculated concentration of negative charged particles (profile 5) is typically 200 cm⁻³ between the surface and 5 km and decreases above this level.

As mentioned earlier, the concentrations of H₂SO₄, MA, and MSA seem to undergo substantial day-night variations. A sensitivity run has been made to derive the concentration of negative ion composition using reported daytime values of H₂SO₄, MA, and MSA concentrations (see Figure 2b). Figure 9 shows the relative abundance of the different negative ion types below 15 km altitude for these conditions. HSO₄⁻ core ions are now the most abundant ions below 10 km with a percentage abundance of typically 40-50% near the surface and 60-70% between 4 and 8 km. Below 10 km, NO₃⁻·HNO₂·H₂O ions contribute to approximately 20% of the negative ions. Above 10 km the most abundant ions are provided by NO₃⁻ core ions. With the adopted aerosol load (nonvolcanic conditions) the calculated percentage abundance of negative cluster ions is typically 40% at the surface and less than 10% above 5 km altitude. The percentage abundances of MA⁻ and MSA-cluster ions are insignificant up to
6 km, but reaches approximately 10% at 11 km. Note that when the presence of aerosol particles is ignored (or for very clean air), the relative abundance of HSO₄⁻ core ions at the surface reaches 80% of the total ion concentration (not shown).

The vertical distributions of the ion number densities are shown in Figure 10. The number density of HSO₄⁻ core ions calculated for daytime conditions (profile 2) is 300 cm⁻³ near the surface, but increases with height to reach approximately 1500 cm⁻³ at 8 km. It decreases with height above this altitude. The concentration of the NO₃⁻ core ion family (profile 1) increases from typically 1 cm⁻³ at 2 km to 2500 cm⁻³ at 15 km altitude. In the case of NO₃⁻, HNO₃, H₂O, the calculated density increases from 100 cm⁻³ at the surface to 500 cm⁻³ between 6 and 10 km, and decreases above 10 km. In the absence of aerosols (very clean air), the daytime concentration of HSO₄⁻ core ions reaches 500 cm⁻³ at the surface (not shown). Tanner and Eisele [1991] report daytime ion concentrations of typically 50 cm⁻³ for NO₃⁻ and 200-250 cm⁻³ for HSO₄⁻ at the Cheeka Peak Research Station in late spring. This station samples mostly very clean air from the Pacific Ocean.

It is interesting to note that the calculated concentration of negative ions is strongly dependent on the rate at which NO₃⁻ (H₂O) and NO₃⁻ HNO₃ H₂O ions react with sulfuric acid reactions (R50) and (R49). The corresponding rate constants have not been measured and a value of 2 x 10⁻¹⁵ cm³ s⁻¹ adopted for the two reactions. A calculation in which these rate constants are set to

Figure 6. (continued)
zero show that, in this case, NO, HNO, H,O ions are dominant during daytime below 10 km altitude with a concentration at the surface 50 times higher than that of HSO, core ions. Thus the calculated ion concentration values depend strongly on the rates at which NO,(H2O) and NO, HNO, H,O react with sulfuric acid.

5. Concluding Remarks

The present study is a first attempt to model simultaneously positive and negative ions in the troposphere. Recent mass spectrometry measurements of tropospheric ions and recent laboratory investigations of their reaction rates make it possible to calculate the vertical profiles of positive and negative ion composition in the troposphere. The distribution of neutral parent constituents, a major requirement for ionic model study, has been calculated from a comprehensive two-dimensional model or is provided on the basis of observational data. Clustered aerosol ions have been proposed to be responsible for the heavy ions, which dominate near the surface. It has been predicted that, in most atmospheric environments, ions having ammonia and methyl cyanide as parent neutral species are not the major ions in the troposphere but that acetone and pyridinated clustered ions are the dominant ions. Pyridine cluster ions dominate below 6 km above which acetone cluster ions become the most abundant. However,
it should be emphasized that the concentration of pyridinated compounds is highly variable from one location to another and hence the concentration of pyridinated compounds could be low in remote (very clean) environments.

The model also shows that, for nighttime conditions, the dominant negative ions in the troposphere are of the type NO\(_2\)-, HNO\(_3\)-, and NO\(_3\)-. These results reproduce most of the observational data reported so far. During daytime, when the concentration of parent neutrals (i.e., H\(_2\)SO\(_4\), MA, and MSA) appears to be much higher, the most abundant negative ions are provided by the HSO\(_4\)-core ion family.

Finally, it is stressed that more observational data are required to evaluate these model results. Major emphasis should be given to the detection of the unidentified mass peaks in ion spectra and to the measurement of the alkaline compounds (especially pyridine, picoline and lutidine) in different atmospheric environments. The atmospheric abundance of these alkaline compounds is likely to increase with time as these are produced as a result of anthropogenic activities. As the concentration of parent neutral compounds varies considerably with space and is probably very different in industrialized and remote regions of the world, the spatial distribution of ions in the troposphere is expected to be nonuniform with local abundances that can be substantially different from those reported in this theoretical study. The model presented here should therefore be considered as a first attempt to represent the vertical distribution of positive and negative ions in the troposphere.

Acknowledgments. The authors are grateful to F. Eisele and G. Tyndall for their valuable comments and suggestions on early versions of the manuscript. G. Beig is grateful to CSIR, New Delhi, for the financial assistance (project 03(0783)96/EMR-II) and to G. B. Pant (Director, IITM) for his encouragement during the course of this work. We acknowledge A. A. Ursekar for her help in the preparation of this manuscript. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation.

References

Eisele, F. L., and E. W. McDaniel, Mass spectrometric study of

Mohler, V. A., Discussion of the formation of major positive and negative ions up to the 50 km level, J. Appl. Geophys., 84, 141-153, 2000.

Schlager, H., R. Fabian, and F. Arnold, A new cluster ion source / ion drift cell apparatus for atmospheric ion studies - First mobility and reaction rate coefficient measurements, in Proc. of the 3rd Int. Swarm Seminar, Innsbruck, Austria, pp. 257-262, 1983.

G. Beig, Indian Institute of Tropical Meteorology, Pune-411 008, India. (email: beig@tropmet.ernet.in)

G. Brasseur, Max Planck Institute for Meteorology, D-20146 Hamburg, Germany (email: brasseur@dkrz.de)

(Received September 15, 1999; revised February 4, 2000; accepted February 14, 2000)